

단순 폐수처리를 넘어 에너지 생산으로..

입상슬러지 기반 고효율 혐기폐수처리공법

Bio-bed® EGSB (Expanded Granular Sludge Bed)

① 회사소개

Environmental technology for a better life.

JE NTECH

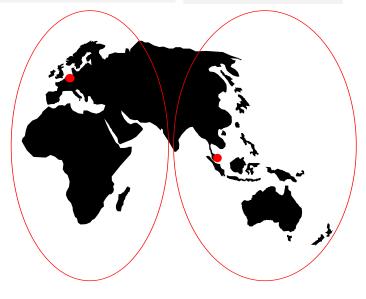
1998. 04	㈜전테크 설립
2000. 08	수질오염 방지시설업 등록
2003. 02	기업부설 연구소 설립(한국산업기술진흥협회)
2005. 10	BIOTHANE "혐기성처리기술" 기술협약체결(現 베올리아)
2006. 02	벤처기업확인(경기지방중소기업청)
2007. 06	신기술인증 (환경부: 제 121호)
2007 . 12	대한민국 기술대상 수상
2009. 11	신·재생에너지 전문기업등록 (지식경제부)
2011. 11	신기술 환경부장관 표창
2012. 10	Condorchem envitech(스페인) "증발농축시스템"기술협약 체결
2014. 01	DEMON Gmbh(스위스) "질소제거기술" 기술협약체결
2016. 08	엔지니어링 사업자 신고
2018. 01	한국수력원자력㈜ 유자격공급자 등록 (Evaporator)
2019. 11	원전해체시범사업 아이디어공모전 최우수상 수상
2019. 11	부품장비 국산화추진을 위한 중소기업 협력연구개발사업 협약체결(w/한국수력원자력㈜)
2021. 05	대한민국 녹색에너지 우수기업 대상 수상

② 기술협력사 소개

Environmental technology for a better life.

Biothane (現 Veolia 자회사)

- ☑ 혐기성 폐수처리 전문회사
- ☑ 35년의 경험 보유
- ☑ 전세계 563개의 혐기성 설비 설치 실적 보유
- ▼ 2008년부터 Veolia의 자회사


Biothane Corporation Camden NJ USA

Si Si

Biothane Systems
International
Delft, The Netherlands

Biothane Asia Pacific (VWS SEA) Singapore

③ Intro. 생물학적 폐수처리의 구분

Environmental technology for a better life.

* 폐수의 농도에 따라 호기성/혐기성 공정적용

호기성 폐수처리

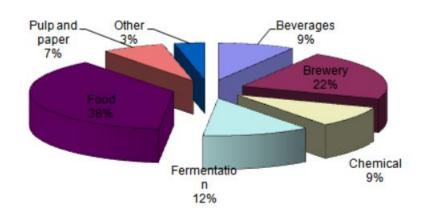
미생물이 산소를 공급받아 대사활동을 통해 유기물을 분해하여 물과 이산화탄소로 산화하는 에너지 소비형 공정

- 폭기에 따른 동력비 소요
- 잉여슬러지 발생량 많음
- 유기물부하가 낮은 경우 적합 (0.3~0.8 kg/m³-d)

혐기성 폐수처리

산소가 없는 상태에서 혐기미생물에 의해 유기물이 분해되어 바이오가스(약 CH₄ 70%, CO₂ 30%)로 전환되는 <mark>에너지 생산형 공정</mark>

- 폭기 불필요로 동력비 절감
- 잉여슬러지 발생량 적음(호기 대비 1/10수준)
- 유기물부하가 높은 경우 적합(12~25 kg/m³-d)
- 신재생 에너지인 바이오가스 생산


4 Intro. 호기처리대비 혐기 폐수처리 비교

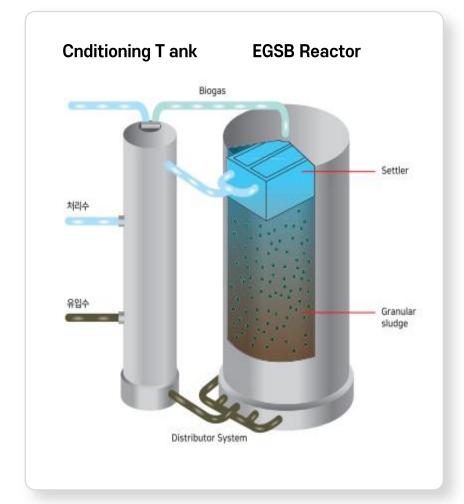
Environmental technology for a better life.

* 주요 경제성 지표 비교

구 분	호기성 공법	혐기성 공법
소요 면적	1	호기성 공법의 1/10
전력소비	1	호기성 공법의 1/4
잉여슬러지 생산량	1	호기성 공법의 1/10
유기물 제거효율(BOD 기준)	90 ~ 98%	80 ~ 95%
생산 에너지	에너지 소비	0.3~0.5 Nm³·CH4/kg·COD
미생물	부유상	입상슬러지
용적부하 (kg/m³·day)	0.3~0.8	12~25

*혐기성 처리 적용분야

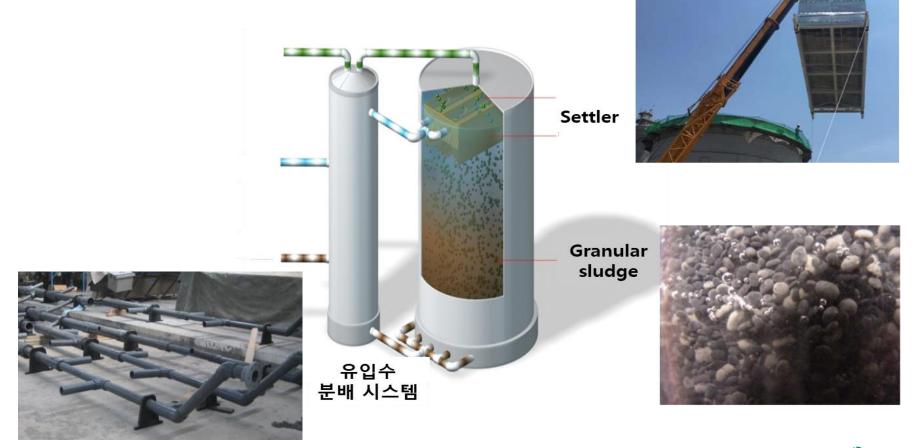
- COD_c 2,000mg/L이상의 유기성 폐수
- 음.식료품 폐수(주스, 식품 가공폐수 등)
- 주류폐수(맥주, 과일주, 기타 제조주 등)
- ◆ 석유화학폐수(PTA 생산폐수 등)
- ♪ 화섬폐수(PET, 기타생산 고농도 유기폐수)
- 제지폐수(라이너지 생산등)
- 제약폐수(약품생산 고농도폐수 등)


5 혐기성 폐수처리기술의 발전사

	: الما	<u>}</u>	
国		色	
`\	34,		

			はなり		HOME
명칭	혐기성 소화조 (Conventional Digester)	혐기성 필터 (AF, Anaerobic Filter)	UASB (Up-flow Anaerobic Sludge Blanket)	혼합형 (Hybrid)	EGSB (Expanded Granular Sludge Bed)
구 분	- 1세대	2세대	3세대	3세대	4세대
모식되	바이오가스 서리수	바이오가스 처리수 메디아층	바이오가스	바이오가스 처리수 제디아층 슬러지층	바이오가스 처리수 세틀러 그래뉼충 하부분배관
특 징	 공정: 혐기성 소화조+침전조 HRT 15~50일 저효율, 낮은 유기물용적부하 소요부지 과다 	메디아에 미생 물 부착(현탁형)막힘/편류 현상 발생	비중이 큰 과립 형 그래뉼과부하시 그래 뉼 유출 발생	 혐기성 슬러지 및 메디아 2가지 혼합형 그래뉼 유출 및 막힘 발생 	 과립형 그래뉼 2단구조 경사판 (settler)침전 하부 유입 분배관 (IDS) 설치 ☞ 타기술대비 그래뉼 유실 적음

Bio-bed® EGSB 공법 개요

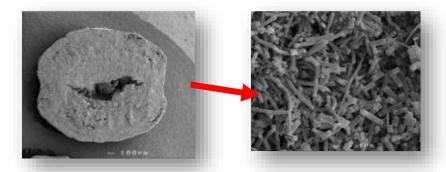

- ☑ UASB와 유사한 구조 및 유동층에서 생성된 입상슬러지(Granule) 기반 공정의 고부하 처리공정
- ✓ UASB 5~10kgCOD/m³-d \rightarrow EGSB 10~20kgCOD/m³-d
- 한응조의 높이와 직경비, 유입수 내부순환율 높게 유지→ 안정된 팽창(Expanded)상태유지, Sludge Bed층 확대로 고부하 처리

◈ 핵심구성

- 1. Granular Sludge
- 2. Settler
- 3. Influent Distribution System

❸ Bio-bed® 기술 특징

Environmental technology for a better life.


1 고밀도 입상형 혐기슬러지

- 슬러지 부착을 위한 담체 투입 필요 없음
- 반응조 내 높은 침강 속도
- 반응조 내 높은 Total Solid 농도 유지(60 ~ 80kgTS/㎡)
- 낮은 잉여 슬러지 발생량 (COD_{Cr} 제거량의 1~2%)

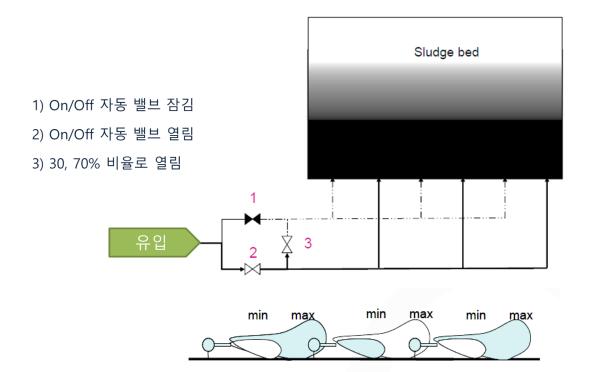
Granular sludge (1-3 mm)

Close up

8 Bio-bed® 기술 특징

² 경사판형 삼상분리기(Settler)

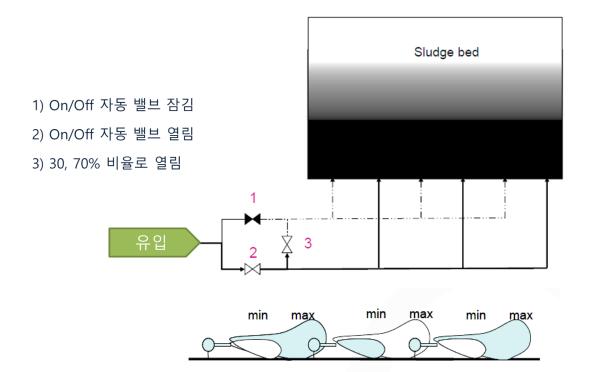
- 반응조 내부에 설치
- 반응조 내에 혼합된 3상(그래뉼, 처리수, 바이오가스)를 분리하는 역할
- 세틀러 내부에 설치된 경사판을 통해 상승된 그래뉼 슬러지 반응조 내로 침강시킴



EGSB 상부에 Settler 설치 모습

3 교차형 유입분배시스템(influent Distribution System)

- 하부 유입분배관에 설치된 ON/OFF자동밸브에 의한 Timer운전
- 높고 낮은 유속으로 교차운전(30%, 70%)
- 반응조 내부 Dead Zone 발생 및 그래뉼내 Channeling현상방지
 - → 폐수접촉성 극대화 및 최적의 슬러지 성장조건 조성)



EGSB 내부 유입 분배관

3 교차형 유입분배시스템(influent Distribution System)

- 하부 유입분배관에 설치된 ON/OFF자동밸브에 의한 Timer운전
- 높고 낮은 유속으로 교차운전(30%, 70%)
- 반응조 내부 Dead Zone 발생 및 그래뉼내 Channeling현상방지
 - → 폐수접촉성 극대화 및 최적의 슬러지 성장조건 조성)

EGSB 내부 유입 분배관

9 Bio-bed® 기술의 경제성

Environmental technology for a better life.

당사 EGSB 적용사례 분석

○ 00맥주 혐기설비공사 (실제 운영 3,500톤/일 기준)

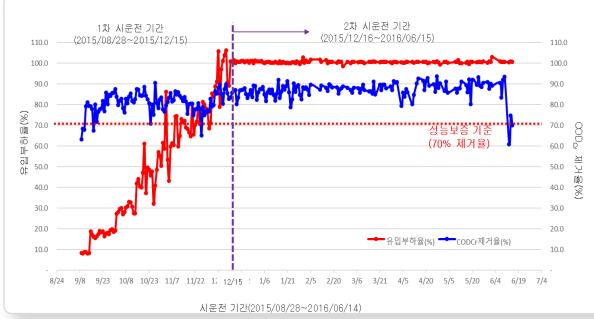
구 분		기존 운영	EGSB도입후 (혐기+호기+화학처리)			비고
		(호기처리+화학처리) 연평균		하절기 (5개월)	춘추/동절기 (7개월)	0177
	전력비	144	94	74	108	35% 절감
원단위	약품비	50	35	22	45	29% 절감
(원/m³)	슬러지 처리비	83	28	31	25	67% 절감
	보일러스팀비 (바이오가스활용)	0	-59	-183	30	4만원/스팀(m³)기준
총괄	원단위 (원/m³)	277	98	-56	208	(-)는 스팀생산에 따른 수익

당사 Bio-bed® EGSB도입으로 연간 운영비 65% 절감

L사 | PTA 폐수

☑ 설치년도: 2014년

☑ 유입 유기물 부하량: 20,160kg/d


☑ 성능보증 사항

1. COD_{Cr} 70% 이상

☞ 현재 평균 82% 이상 처리 효율 확인

2. 혐기성 반응조 내 그래뉼 슬러지 증식

☞ 반응조 내 그래뉼 슬러지 증식 확인

성공적 시운전 완료 후 정상 운영중!

12 주요 적용사례

L사 | 맥주폐수

☑ 설치년도: 2015년

☑ 유입 유기물 부하량 : 20,704kg/d (6,500m³/d)

☑ 성능보증 사항

1. COD_{Cr} 85% 이상

☞ 현재 평균 90% 이상 처리 효율 확인

2. 혐기성 반응조 내 그래뉼 슬러지 증식

☞ 반응조 내 그래뉼 슬러지 증식 확인

구분		COD _{Cr}	SS	T-N	Т-Р
이이스	설 계	4,770	360	70	45
유입수	운 영	2,733	-	52	17
처리수	설 계	716	360	61	43
	운 영	193	-	37	10
성능보증 수치		715			
운전기간 처리효율		90%			

A사 | 제지폐수

☑ 설치년도: 2013년

☑ 유입 유기물 부하량 : 16,883kg/d (4,000m³/d)

☑ 성능보증 사항

1. 처리수 COD_{Cr} 1,326mg/L 이하

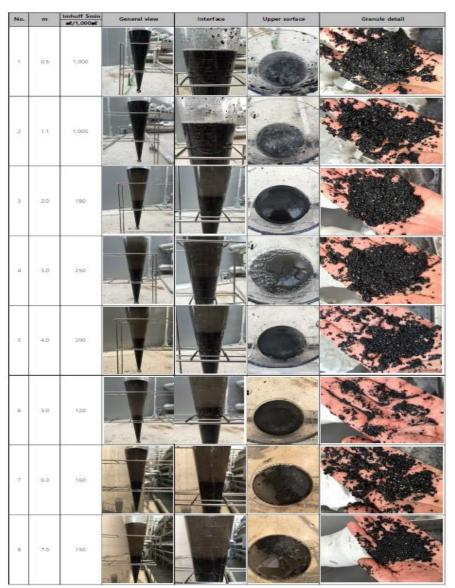
☞ <u>현재 평균 1,300mg/L 이하 운전 확인</u>

2. 혐기성 반응조 내 그래뉼 슬러지 증식

☞ 반응조 내 그래뉼 슬러지 증식 확인

구분		COD _{Cr}	SS	Ca	BOD
이스	설 계	3,900	300	600	1,300
유입수	운영	3,614	-	680	17
처리수	설 계	1,326	240	384	203
	운영	1,265			

₩ 반응조내 그래뉼의 관리


Environmental technology for a better life.

혐기성 그래뉼 관리방법

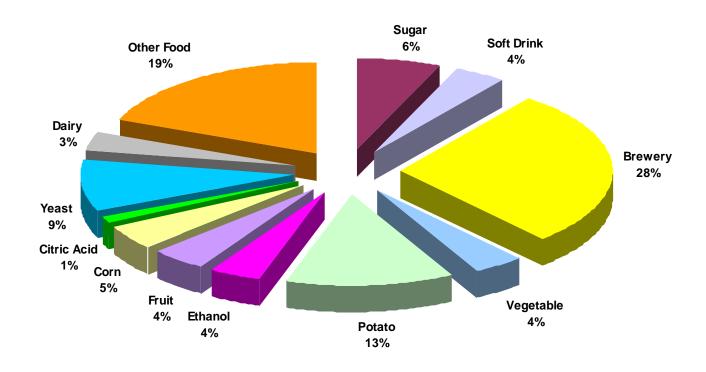
- 주기적인 반응조내 슬러지 sampling
- 슬러지 증가량 checking
- 슬러지 그래뉼화 여부 확인
- 반응조 높이 별 슬러지 상태확인

ⓑ 화학폐수 주요 적용실적 (국내)

ᆒᄉᄌᄅ	설계조	건	서+미리드
폐수종류	유기물 부하량 (kgCOD _{Cr} /d)	적용공법	설치년도
중합(EG/PET)폐수	8,280	UASB	1992
PTA,PET공장폐수	14,000	UASB	1994
중합(EG)폐수	925	UASB	1997
중합(EG)폐수	5,040	EGSB	2009
중합(EG)폐수	8,280	UASB	2009
중합(EG)폐수	5,500	EGSB	2009
중합(EG)폐수	2,400	EGSB	2009
화학(Dmac)폐수	4,980	EGSB	2010
화학폐수	5,250	EGSB	2010
중합(EG)폐수	7,200	EGSB	2012
중합(EG)폐수	2,400	EGSB	2012
화학(고농도)폐수	3,250	EGSB	2012
화학(감광제)폐수	1,800	EGSB	2012
중합(EG & 1.4Dox)폐수	15,250	EGSB	2014
중합(EG & 1.4Dox)폐수	30,000	EGSB	2014
PET 폐수	1,200	EGSB+MBR	2015
화학 폐수	1,500	EGSB+AS	2017
화학 폐수	2,500	화학+호기	2018
PTA 폐수	49,000	EGSB	2018

15 주정폐수 주요 적용실적 (국내)

ᆒᇫᄌᄀ	설계조건	M+111C	
폐수종류	유기물 부하량 (kgCOD _{Cr} /d)	적용공법	설치년도
맥주폐수	35,000	UASB	1991
맥주폐수	57,500	UASB	1992
주정폐수	1,978	UASB	1994
맥주폐수	12,000	UASB	1995
주정폐수	2,800	UASB	1999
맥주폐수	30,000	EGSB	2007
맥주폐수	6,000	EGSB+MLE	2013
맥주폐수	6,500	EGSB+MLE	2016



15 제지/염색/식품 폐수 주요 적용실적 (국내)

발주처	폐수종류	설계조건	설치년도	
르 구시	МТО П	유기물 부하량 (kgCOD _{cr} /d)	적용공법	르시 Cエ
한국바스프/울산	염료,안료 폐수	1,224	UASB	1993
조흥화학/시화	효모(Yesst)폐수	1,750	UASB	1997
아세아페이퍼텍	제지폐수	36,000	EGSB	2008
한국바스프/울산 (Repair)	염료,안료 폐수	1,224	UASB	2011
신대양제지㈜/시화	제지폐수	40,000	EGSB	2013
㈜아진피엔피/경북	제지폐수	16,000	EGSB	2013
시온식품/부산	간장폐수	2,500	EGSB	1996
빙그레/도농	유지방(아이스크림) 폐수	2,800	EGSB	1997
농심켈로그/안성	당류폐수	1,000	UASB	1998
한화/대전	음식물침출수폐수	3,360	UASB	2004

전세계 약 600여개 적용 실적 보유

국내외 600여개의 적용실적을 통해 입증된 기술력 풍부한 Reference와 체계화된 시스템을 갖춘 ㈜전테크 고효율 Bio-bed® EGSB공법.

단순 폐수처리를 넘어 에너지 생산공정으로의 전환을 제시합니다.

감사합니다

www.jtch.co.kr

- / 공장 (27826) 충청북도 진천군 진천읍 문사로 319 TEL. 043-533-6965 ▮ FAX. 043-533-6965